Высотные разряды — эльфы, голубые джеты и красные спрайты. Молнии, спрайты, джеты и эльфы Что такое эльфы спрайты джеты

Думаю, не ошибусь, если предположу, что практически все знают, что такое молния, наверняка все видели молнии линейные и слышали про существование шаровых молний (а некоторые даже видели), но этими двумя широко известными разновидностями атмосферные электрические разряды не исчерпываются.

Сообщения о непонятных явлениях, которые происходят в верхних слоях земной атмосферы, приходили давно. И только совсем недавно на них обратили внимание ученые. Летчики и космонавты, например, нередко видели какие-то субстанции, иногда напоминавшие живых существ. На доли секунды они появлялись в околоземном пространстве на высоте от 50 до 100 км.

Пилоты самолетов говорили о ночных «вспышках». Подтвердить эти факты удалось лишь в 70-е гг. XX в., а в начале нынешнего столетия их наконец запечатлели при помощи современной техники — аппаратуры, находившейся на борту орбитальных станций.

Выяснилось, что эти явления можно классифицировать по внешнему виду. Так, красноватые кольца получили название «эльфы», бьющие вверх синие «фонтаны» - «голубые джеты», голубые «медузы» - «спрайты», красные - «тайгеры» .


Фото отсюда

Снимки «спрайтов» впервые удалось получить летом 2005 г. в Колорадо: их фотографировали при помощи специальной камеры со скоростью 5 тыс. кадров в секунду. Специалисты Университета Аляски использовали более мощную аппаратуру (скорость съемки — 10 тыс. кадров в секунду). Она и помогла выявить, как на самом деле выглядят «спрайты». Оказалось, что они похожи на подпрыгивающие шары.

По словам Ганса Нельсена, «призраки» представляют собой яркие сгустки, напоминающие огромные шаровые молнии, которые летят со скоростью, равной одной десятой скорости света сначала вертикально вниз, а потом - вверх. Вероятно, они — результат химических соединений, воздействующих на атмосферные процессы. Ученые предполагают, что из-за них может меняться климат и разрушаться озоновый слой.



Спрайты над грозой в Канзасе 10 августа 2000, наблюдаемые в мезосфере на высоте 50-90км, как отклик на мощные удары молнии от тропосферных гроз. (Фото: Walter Lyons, FMA Research, Fort Collins, Colorado).


Спрайты - некое подобие молний, только бьющих не вниз, а вверх . Фото из Интернета

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно довольно мало, поэтому крайне важны не только научные, но и любительские, но правильно организованные, наблюдения.

Несмотря на то, что спрайты существуют миллионы лет, они впервые были обнаружены и документально подтверждены лишь случайно в 1989. Прежде о ночных призраках регулярно докладывали пилоты. Но ученые не верили. Приравнивали их свидетельства к сообщениям об НЛО.

Эльфы вспыхивают огромным красноватым кольцом. Спрайты похожи на голубых медуз. Красные медузы, появляющиеся ниже спрайтов, это тайгеры.

Голубые джеты - самые низкоживущие из всех ионосферных обитателей - выглядят синими фонтанами.
Спрайты напоминают похожие природные явления, которые метеорологи и физики атмосферы прозвали «эльфы», «гоблины» и «тролли». Эти вспышки так называют потому, что они как бы «танцуют» в небе, это может объяснить некоторые из сообщений об НЛО.
Сегодня учёные продолжают изучать феномен, чтобы лучше понять его структуру. С помощью триангуляционного метода учёные смогли вычислить размеры спрайтов. Свечи их достигают 24 км в высоту, а скопление свечей - 72 км в ширину.


Голубой джет. Фото - Patrice Huet

Голубой джет - явление достаточно редкое, в Сети удалось найти только одну его фотографию - жаль, что у меня не получилось его снять;)

Было также замечено, что металлизированные (в те годы - в основном, позолоченные) купола реже поражаются молнией.

Большой толчок в изучении молнии дало развитие мореплавания. Во-первых, мореплаватели столкнулись с грозами невиданной на суше силы, во-вторых, обнаружили, что грозы неравномерно распределены по географическим широтам, в-третьих, заметили, что при недалеком ударе молнии стрелка компаса испытывает сильные возмущения, в-четвертых, четко связали появление огней святого эльма и надвигающейся грозы. Кроме того, именно мореплаватели первыми обратили внимание, что перед грозой возникали явления, похожие на те, что возникают при электризации стекла или шерсти от трения.

Развитие физики в XVII - XVIII веках позволило выдвинуть гипотезу о связи молнии и электричества. В частности, такого представления придерживался М.В. Ломоносов . Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

К началу XIX века большинство ученых уже не сомневались в электрической природе молнии (хотя существовали и альтернативные гипотезы, например, химическая) и основными вопросами исследования стали механизм выработки электричества в грозовых облаках и параметры грозового разряда.

Молния 1882 (с) фотограф: Уильям Н. Дженнингс, Си. 1882

В конце XX века при изучении молнии было открыто новое физическое явление - пробой на убегающих электронах.

Для изучения физики молнии применяются методы наблюдения со спутников.

Виды

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях , торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам , так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках , при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - молния облако-земля . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Молнии облако-земля

Процесс развития такой молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях .

Запуск молнии происходит от высокоэнергетических частиц, вызывающих пробой на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи) . Таким образом возникают электронные лавины , переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000-30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Полёт из Калькутты в Мумбаи

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растёт по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе . Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Вероятность поражения молнией наземного объекта растёт по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

В верхней атмосфере

Молнии и электрические разряды в верхних слоях атмосферы

Вспышки в верхних слоях атмосферы: стратосфере , мезосфере и термосфере , направленные вверх, вниз и горизонтально, очень слабо изучены. Они подразделяются на спрайты, джеты и эльфы . Окраска вспышек и их форма зависит от высоты, на которой они происходят. В отличие от наблюдаемых на Земле молний, эти вспышки имеют яркий цвет, обычно красный или синий, и покрывают большие пространства в верхних слоях атмосферы, а иногда простираются до границы с космосом .

«Эльфы»

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), продолжительность джетов больше, чем у эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Частота

Частота молний на квадратный километр в год по данным спутникового наблюдения за 1995-2003 годы

Чаще всего молнии возникают в тропиках .

Местом, где молнии встречаются чаще всего, является деревня Кифука в горах на востоке Демократической Республики Конго . Там в среднем отмечается 158 ударов молний на квадратный километр в год . Также молнии очень часты на Кататумбо в Венесуэле , в Сингапуре , городе Терезина на севере Бразилии и в «Аллее молний» в центральной Флориде .

Взаимодействие с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год . 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю .

Самые мощные молнии вызывают рождение фульгуритов .

Зачастую молния, попадая в деревья и трансформаторные установки на железной дороге, вызывает их возгорание. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Ударная волна

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны , опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа, что сопоставимо с ударной волной, создаваемой тактическим ядерным оружием,
  • на расстоянии 0,5 м - 0,025 МПа, что сопоставимо с ударной волной, вызванной взрывом артиллерийской мины и вызывает разрушение непрочных строительных конструкций и травмы человека,
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди, животные и молния

Молнии - серьёзная угроза для жизни людей и животных. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по каналу наименьшего электрического сопротивления, что в общем случае соответствует кратчайшему пути [ ] «грозовое облако - земля».

Поражение обычной линейной молнией внутри здания невозможно. Однако бытует мнение, что так называемая шаровая молния может проникать внутрь здания через щели и открытые окна.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электрическим током. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока» , места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии , древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь . В случае остановки дыхания показано проведение реанимации , в более лёгких случаях помощь зависит от состояния и симптомов.

По одним данным, каждый год в мире от удара молнии погибают 24 000 человек и около 240 000 получают травмы . По другим оценкам, в год в мире от удара молнии погибает 6000 человек .

Вероятность, что житель США получит удар молнией в текущем году, оценивается как 1 из 960 000, вероятность того, что он когда-либо в жизни (при продолжительности жизни 80 лет) получит удар молнией, составляет 1 из 12 000 .

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине опасно прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности .

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства .

Молния и электрооборудование

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим аварии и пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники , нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы . Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией, который может повреждать оборудование на расстоянии до нескольких километров от места удара молнии. Достаточно уязвимыми к электромагнитному импульсу молнии являются локальные вычислительные сети.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая ёмкость самолёта, находящегося в воздухе, невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлёте и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Известные авиационные катастрофы, вызванные молнией:

  • Катастрофа Ил-12 под Зугдиди (1953 год) - 18 погибших, в том числе Народная артистка Грузинской ССР и Заслуженная артистка РСФСР Нато Вачнадзе
  • Катастрофа L-1649 под Миланом (1959 год) - 69 погибших (официально - 68)
  • Катастрофа Boeing 707 в Элктоне (1963 год) - 81 погибший. Занесена в книгу рекордов Гиннесса , как наибольшее число погибших из-за удара молнии. После неё в правила по созданию новых самолётов внесли пункт об испытаниях на попадания молний.

Молния и корабли

Молния также представляет очень большую угрозу для надводных кораблей ввиду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряжённости электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надёжно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии, а молниеотводы гарантируют защиту людей, находящихся на палубах. Поэтому для современных надводных кораблей молния не опасна.

Деятельность человека, вызывающая молнию

Защита от молний

Техника безопасности при грозе

Большинство гроз обычно происходят без каких либо существенных последствий, тем не менее, необходимо соблюдать ряд правил безопасности:

  • Следить за движением грозового облака, оценивая расстояния для места грозовой активности по времени запаздывания грома относительно молнии. Если расстояние уменьшается до 3 километров (запаздывание менее 10 секунд) значит существует риск близкого удара молнии и необходимо незамедлительно принять меры по защите себя и имущества.
  • На открытой местности (степь, тундра, большие пляжи) необходимо по возможности переместиться в пониженные места (овраги, балки, складки местности), но не приближаться при этом к водоему.
  • В лесу следует переместиться на участок с невысокими молодыми деревьями.
  • В населенном пункте, по возможности - укрыться в помещении.
  • В горах следует искать укрытие в распадках, расщелинах (однако надо учитывать возможность возникновения в них склонового стока при сильном ливне, сопровождающем грозу) под устойчивыми нависающими камнями, в пещерах.
  • При движении на автомобиле следует остановиться (если это позволяет дорожная ситуация и не запрещено правилами), закрыть окна, выключить двигатель. Движение во время близкой грозы очень опасно, поскольку водитель может быть ослеплен яркой вспышкой близкого разряда, а электронные устройства управления современного автомобиля - дать сбой.
  • При нахождении на водоеме (река, озеро) на лодках, плотах, байдарках необходимо как можно скорее направляться к берегу, острову, косе или дамбе. Находиться в воде во время грозы очень опасно, поэтому нужно выйти на берег.
  • Находясь в помещении следует закрыть окна и отойти от них на расстояние хотя 1 метр, прекратить телевизионный и радиоприем на внешнюю антенну, отключить электронные приборы, питаемые от сети.
  • Очень опасно во время грозы находиться возле следующих объектов: отдельно стоящие деревья, опоры линии электропередач, освещения, связи и контактной сети, флагштоки, различные архитектурные столбы, колонны, водонапорные башни, электрические подстанции (здесь дополнительную опасность создает разряд между токоведущими шинами, который может быть инициирован ионизацией воздуха грозовым разрядом), крыши и балконы верхних этажей возвышающихся над городской застройкой зданий.
  • Достаточно безопасными и пригодными для укрытия местами являются: водопропускные трубы автомобильных и железных дорог (являются также и неплохой защитой и от дождя), места под пролетными строениями мостов, путепроводов, эстакад, навесы автозаправочных станций.
  • Достаточно надежной защитой от молнии может служить любое закрытое транспортное средство (автомобиль, автобус, железнодорожный вагон). Однако транспортных средств с тентовой крышей стоит остерегаться.
  • Если гроза застигла в месте, где нет никаких укрытий, следует сесть на корточки, снизив таким образом свою высоту над уровнем земли, но ни в коем случае не ложиться на землю и не опираться руками (чтобы не попасть под действие шагового напряжения), накрыть голову и лицо любым подручным укрытием (капюшон, пакет и т.п.), чтобы защитить их от ожога ультрафиолетовым излучением от возможного близкого разряда. Велосипедистам и мотоциклистам следует отойти от своей техники на расстояние 10-15 м.

Наряду с молнией в эпицентре грозовой активности опасность представляют также нисходящий поток воздуха, создающий порывы шквалистого ветра и интенсивные осадки, в том числе - град от которых тоже требуется защита.

Грозовой фронт проходит достаточно быстро, поэтому особые меры безопасности требуются в течение сравнительно небольшого интервала времени, в умеренном климате обычно не более 3-5 минут.

Защита технических объектов

В древнегреческих мифах

См. также

Примечания

  1. Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. 5-е изд. М: Наука, 1972 г. С. 138
  2. Ученые назвали самую протяженную и самую продолжительную молнии
  3. B. Hariharan, A. Chandra, S. R. Dugad, S. K. Gupta, P. Jagadeesan, A. Jain, P. K. Mohanty, S. D. Morris, P. K. Nayak, P. S. Rakshe, K. Ramesh, B. S. Rao, L. V. Reddy, M. Zuberi, Y. Hayashi, S. Kawakami, S. Ahmad, H. Kojima, A. Oshima, S. Shibata, Y. Muraki, and K. Tanaka (GRAPES-3 Collaboration) Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment // Phys. Rev. Lett. , 122, 105101 - Published 15 March 2019
  4. Красные Эльфы и Синие Джеты
  5. Гуревич А. В., Зыбин К. П. «Пробой на убегающих электронах и электрические разряды во время грозы » // УФН , 171, 1177-1199, (2001)
  6. Иудин Д. И., Давыденко С. С., Готлиб В. М., Долгоносов М. С., Зелёный Л. М. «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений » // УФН , 188, 850-864, (2018)
  7. Ермаков В. И., Стожков Ю. И. Физика грозовых облаков // , РАН, М., 2004 г. :37
  8. В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
  9. Александр Костинский. «Молниеносная жизнь эльфов и гномов» Вокруг света , № 12, 2009.

Было также замечено, что металлизированные (в те годы - в основном, позолоченные) купола реже поражаются молнией.

Большой толчок в изучении молнии дало развитие мореплавания. Во-первых, мореплаватели столкнулись с грозами невиданной на суше силы, во-вторых, обнаружили, что грозы неравномерно распределены по географическим широтам, в-третьих, заметили, что при недалеком ударе молнии стрелка компаса испытывает сильные возмущения, в-четвертых, четко связали появление огней святого эльма и надвигающейся грозы. Кроме того, именно мореплаватели первыми обратили внимание, что перед грозой возникали явления, похожие на те, что возникают при электризации стекла или шерсти от трения.

Развитие физики в XVII - XVIII веках позволило выдвинуть гипотезу о связи молнии и электричества. В частности, такого представления придерживался М.В. Ломоносов . Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

К началу XIX века большинство ученых уже не сомневались в электрической природе молнии (хотя существовали и альтернативные гипотезы, например, химическая) и основными вопросами исследования стали механизм выработки электричества в грозовых облаках и параметры грозового разряда.

Молния 1882 (с) фотограф: Уильям Н. Дженнингс, Си. 1882

В конце XX века при изучении молнии было открыто новое физическое явление - пробой на убегающих электронах.

Для изучения физики молнии применяются методы наблюдения со спутников.

Виды

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях , торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам , так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках , при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - молния облако-земля . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Молнии облако-земля

Процесс развития такой молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях .

Запуск молнии происходит от высокоэнергетических частиц, вызывающих пробой на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи) . Таким образом возникают электронные лавины , переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000-30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Полёт из Калькутты в Мумбаи

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растёт по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе . Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Вероятность поражения молнией наземного объекта растёт по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

В верхней атмосфере

Молнии и электрические разряды в верхних слоях атмосферы

Вспышки в верхних слоях атмосферы: стратосфере , мезосфере и термосфере , направленные вверх, вниз и горизонтально, очень слабо изучены. Они подразделяются на спрайты, джеты и эльфы . Окраска вспышек и их форма зависит от высоты, на которой они происходят. В отличие от наблюдаемых на Земле молний, эти вспышки имеют яркий цвет, обычно красный или синий, и покрывают большие пространства в верхних слоях атмосферы, а иногда простираются до границы с космосом .

«Эльфы»

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), продолжительность джетов больше, чем у эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Частота

Частота молний на квадратный километр в год по данным спутникового наблюдения за 1995-2003 годы

Чаще всего молнии возникают в тропиках .

Местом, где молнии встречаются чаще всего, является деревня Кифука в горах на востоке Демократической Республики Конго . Там в среднем отмечается 158 ударов молний на квадратный километр в год . Также молнии очень часты на Кататумбо в Венесуэле , в Сингапуре , городе Терезина на севере Бразилии и в «Аллее молний» в центральной Флориде .

Взаимодействие с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год . 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю .

Самые мощные молнии вызывают рождение фульгуритов .

Зачастую молния, попадая в деревья и трансформаторные установки на железной дороге, вызывает их возгорание. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Ударная волна

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны , опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа, что сопоставимо с ударной волной, создаваемой тактическим ядерным оружием,
  • на расстоянии 0,5 м - 0,025 МПа, что сопоставимо с ударной волной, вызванной взрывом артиллерийской мины и вызывает разрушение непрочных строительных конструкций и травмы человека,
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди, животные и молния

Молнии - серьёзная угроза для жизни людей и животных. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по каналу наименьшего электрического сопротивления, что в общем случае соответствует кратчайшему пути [ ] «грозовое облако - земля».

Поражение обычной линейной молнией внутри здания невозможно. Однако бытует мнение, что так называемая шаровая молния может проникать внутрь здания через щели и открытые окна.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электрическим током. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока» , места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии , древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь . В случае остановки дыхания показано проведение реанимации , в более лёгких случаях помощь зависит от состояния и симптомов.

По одним данным, каждый год в мире от удара молнии погибают 24 000 человек и около 240 000 получают травмы . По другим оценкам, в год в мире от удара молнии погибает 6000 человек .

Вероятность, что житель США получит удар молнией в текущем году, оценивается как 1 из 960 000, вероятность того, что он когда-либо в жизни (при продолжительности жизни 80 лет) получит удар молнией, составляет 1 из 12 000 .

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине опасно прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности .

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства .

Молния и электрооборудование

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим аварии и пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники , нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы . Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией, который может повреждать оборудование на расстоянии до нескольких километров от места удара молнии. Достаточно уязвимыми к электромагнитному импульсу молнии являются локальные вычислительные сети.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая ёмкость самолёта, находящегося в воздухе, невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлёте и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Известные авиационные катастрофы, вызванные молнией:

  • Катастрофа Ил-12 под Зугдиди (1953 год) - 18 погибших, в том числе Народная артистка Грузинской ССР и Заслуженная артистка РСФСР Нато Вачнадзе
  • Катастрофа L-1649 под Миланом (1959 год) - 69 погибших (официально - 68)
  • Катастрофа Boeing 707 в Элктоне (1963 год) - 81 погибший. Занесена в книгу рекордов Гиннесса , как наибольшее число погибших из-за удара молнии. После неё в правила по созданию новых самолётов внесли пункт об испытаниях на попадания молний.

Молния и корабли

Молния также представляет очень большую угрозу для надводных кораблей ввиду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряжённости электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надёжно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии, а молниеотводы гарантируют защиту людей, находящихся на палубах. Поэтому для современных надводных кораблей молния не опасна.

Деятельность человека, вызывающая молнию

Защита от молний

Техника безопасности при грозе

Большинство гроз обычно происходят без каких либо существенных последствий, тем не менее, необходимо соблюдать ряд правил безопасности:

  • Следить за движением грозового облака, оценивая расстояния для места грозовой активности по времени запаздывания грома относительно молнии. Если расстояние уменьшается до 3 километров (запаздывание менее 10 секунд) значит существует риск близкого удара молнии и необходимо незамедлительно принять меры по защите себя и имущества.
  • На открытой местности (степь, тундра, большие пляжи) необходимо по возможности переместиться в пониженные места (овраги, балки, складки местности), но не приближаться при этом к водоему.
  • В лесу следует переместиться на участок с невысокими молодыми деревьями.
  • В населенном пункте, по возможности - укрыться в помещении.
  • В горах следует искать укрытие в распадках, расщелинах (однако надо учитывать возможность возникновения в них склонового стока при сильном ливне, сопровождающем грозу) под устойчивыми нависающими камнями, в пещерах.
  • При движении на автомобиле следует остановиться (если это позволяет дорожная ситуация и не запрещено правилами), закрыть окна, выключить двигатель. Движение во время близкой грозы очень опасно, поскольку водитель может быть ослеплен яркой вспышкой близкого разряда, а электронные устройства управления современного автомобиля - дать сбой.
  • При нахождении на водоеме (река, озеро) на лодках, плотах, байдарках необходимо как можно скорее направляться к берегу, острову, косе или дамбе. Находиться в воде во время грозы очень опасно, поэтому нужно выйти на берег.
  • Находясь в помещении следует закрыть окна и отойти от них на расстояние хотя 1 метр, прекратить телевизионный и радиоприем на внешнюю антенну, отключить электронные приборы, питаемые от сети.
  • Очень опасно во время грозы находиться возле следующих объектов: отдельно стоящие деревья, опоры линии электропередач, освещения, связи и контактной сети, флагштоки, различные архитектурные столбы, колонны, водонапорные башни, электрические подстанции (здесь дополнительную опасность создает разряд между токоведущими шинами, который может быть инициирован ионизацией воздуха грозовым разрядом), крыши и балконы верхних этажей возвышающихся над городской застройкой зданий.
  • Достаточно безопасными и пригодными для укрытия местами являются: водопропускные трубы автомобильных и железных дорог (являются также и неплохой защитой и от дождя), места под пролетными строениями мостов, путепроводов, эстакад, навесы автозаправочных станций.
  • Достаточно надежной защитой от молнии может служить любое закрытое транспортное средство (автомобиль, автобус, железнодорожный вагон). Однако транспортных средств с тентовой крышей стоит остерегаться.
  • Если гроза застигла в месте, где нет никаких укрытий, следует сесть на корточки, снизив таким образом свою высоту над уровнем земли, но ни в коем случае не ложиться на землю и не опираться руками (чтобы не попасть под действие шагового напряжения), накрыть голову и лицо любым подручным укрытием (капюшон, пакет и т.п.), чтобы защитить их от ожога ультрафиолетовым излучением от возможного близкого разряда. Велосипедистам и мотоциклистам следует отойти от своей техники на расстояние 10-15 м.

Наряду с молнией в эпицентре грозовой активности опасность представляют также нисходящий поток воздуха, создающий порывы шквалистого ветра и интенсивные осадки, в том числе - град от которых тоже требуется защита.

Грозовой фронт проходит достаточно быстро, поэтому особые меры безопасности требуются в течение сравнительно небольшого интервала времени, в умеренном климате обычно не более 3-5 минут.

Защита технических объектов

В древнегреческих мифах

См. также

Примечания

  1. Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. 5-е изд. М: Наука, 1972 г. С. 138
  2. Ученые назвали самую протяженную и самую продолжительную молнии
  3. B. Hariharan, A. Chandra, S. R. Dugad, S. K. Gupta, P. Jagadeesan, A. Jain, P. K. Mohanty, S. D. Morris, P. K. Nayak, P. S. Rakshe, K. Ramesh, B. S. Rao, L. V. Reddy, M. Zuberi, Y. Hayashi, S. Kawakami, S. Ahmad, H. Kojima, A. Oshima, S. Shibata, Y. Muraki, and K. Tanaka (GRAPES-3 Collaboration) Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment // Phys. Rev. Lett. , 122, 105101 - Published 15 March 2019
  4. Красные Эльфы и Синие Джеты
  5. Гуревич А. В., Зыбин К. П. «Пробой на убегающих электронах и электрические разряды во время грозы » // УФН , 171, 1177-1199, (2001)
  6. Иудин Д. И., Давыденко С. С., Готлиб В. М., Долгоносов М. С., Зелёный Л. М. «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений » // УФН , 188, 850-864, (2018)
  7. Ермаков В. И., Стожков Ю. И. Физика грозовых облаков // , РАН, М., 2004 г. :37
  8. В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
  9. Александр Костинский. «Молниеносная жизнь эльфов и гномов» Вокруг света , № 12, 2009.

Спрайты - одни из красивейших природных явлений на нашей планете - невероятной величины молнии.

Спрайты - необычные молнии, которые способны удивить человека не только своей божественной красотой, но и нестандартным, как для молнии, поведением. Мы привыкли, что обычная молния бьет с облаков вниз на землю. Что касается спрайтов, то здесь дело обстоит иначе - они бьют вверх, создавая в небесной сфере потрясающе красивое зрелище.


Впервые спрайты были зафиксированы в 1989 году. Первым их увидел американский астроном-эксперт Джон Уинклер, который почти полвека проработал в NASA. Ученый обнаружил молнии случайно, когда в целях научных изысканий наблюдал за грозой. Впервые увидев эти направленные вертикально вверх молнии, он не поверил собственным глазам. Удивило Уинклера и то, что такой разряд появлялся на необычайно большой, как для обычной молнии, высоте. Направленный вертикально вверх он мог представлять опасность для аппаратов, запускаемых в космос, самолетов и прочих летательных машин. По этой причине Джон Уинклер решил продолжить изучение этого необычного явления.

В ночь с 22 на 23 сентября 1989 года мистер Уинклер, воспользовавшись высокоскоростной кинокамерой, умудрился заснять огромные вспышки света, которые простирались в небе по направлению снизу-вверх. Ученый, пользовавшийся устаревшей аппаратурой, посчитал, что эти молнии возникли на высоте 14 километров, что вполне допустимо и для обычных молний. Впоследствии, когда изучением спрайтов занялись современные научно-исследовательские центры и лаборатории, было доказано, что эти природные явления появляются на высоте не менее 55 км. На такой высоте вы не сможете встретить ни одного небесного разряда, который был бы направлен в сторону земли.

Механизм возникновения спрайтов

Заинтересовавшись данными о спрайтах, которые представил Уинклер сотрудникам NASA, ученые почти сразу же развернули крупномасштабную кампанию по изучению этого природного явления. В первую же ночь исследований они обнаружили около 200 вспышек молний в слоях ионосферы. Вспышки света возникали в основном в пределах 50-130 километров над поверхностью земли. Это зрелище одинаково восхищало и страшило ученых, поскольку в те времена многие из них еще не знали, чего толком можно ждать от спрайтов. Опасения ученых были понятны, так как спрайты имели все шансы на то, чтобы стать прямой угрозой для высотных летательных аппаратов. Чтобы исключить возможность этой угрозы, ученые решили изучить механизм возникновения спрайтов.

Проведя ряд наблюдения за спрайтами, ученые выяснили, что это явление возникает в основном только при очень сильной грозе, шторме или урагане. Большинство обычных молний, которые достигают земли, бьют из отрицательно заряженной части облака. Однако некий их процент берет свое начало в положительно заряженной части. Доказано, что молнии, берущие начало в этой области, обладают более сильным зарядом, а соответственно и силой. Считается, что в положительно заряженной части облака берут свое начало и спрайты.

Детальное исследование спрайтов показало, что они бьют снизу от облака вверх к ионосфере. В некоторых случаях часть этой молнии (хвост спрайта) уходит в низ по направлению к земле, но никогда не достигает ее. Наблюдение и анализ вспышек в верхних слоях атмосферы показали, что молнии, образующиеся в этой области, могут отличаться по цвету, форме, а также высоте, на которой они появляются. Исходя из этих критериев, ученые решили классифицировать верхние молнии, разделив на джеты, спрайты и эльфы.

Джеты, спрайты и эльфы

Джеты представляют собой вспышки света, наблюдаемые на наиболее близком расстоянии к земле, от 15 до 30 километров. Именно их, скорее всего, зафиксировал Джон Уинклер, который в 1989 году впервые произвел наблюдение вспышек молний в верхних слоях атмосферы. Джеты имеют трубчатую форму. Обычно они сине-белого или голубого оттенка. Известны случаи появления гигантских джетов, которые били в высоту на расстояние около 70 километров.

Спрайты - вид молний, о которых мы говорим в этой статье. Они появляются на высоте от 50 до 130 километров и бьют по направлению к ионосфере. Спрайты появляются через доли секунды после удара обычной молнии. Обычно они возникают группами, а не поодиночке. Длина спрайтов, как правило, держится в пределах нескольких десятков километров. Диаметр группы спрайтов может достигать 100 км в поперечнике. Спрайты - это красные вспышки света. Они быстро появляются и быстро исчезают «Продолжительность жизни» спрайта всего около 100 миллисекунд.

Эльф

Эльфы - венец атмосферных молний. Они появляются на высоте свыше 100 км над земной поверхностью. Обычно эльфы появляются группами, напоминающими круг

Диаметр такой группы может достигать 400 км в поперечнике. Также эльфы могут бить до 100 км в высоту - в самые верхние слои ионосферы. Зафиксировать эльфы крайне сложно, так как «живут» они не дольше пяти миллисекунд. Заснять такое явление можно только при помощи специальных, современных видеоприборов.

Как, где и когда можно наблюдать спрайты

Согласно Географической карте гроз, наибольшими шансами увидеть спрайты обладают жители экваториальной и тропической зоны Земного шара. Именно в этой области случается до 78% всех гроз. Жители России также могут наблюдать спрайты. Пик гроз в нашей стране приходится на июль-август месяц. Именно в это время любители астрономии могут увидеть такое красивое явление как спрайты.

Согласно американскому Справочнику наблюдения за спрайтами и гигантскими джетами, для того, чтобы увидеть спрайты, наблюдатель должен находиться на расстоянии примерно 100 километров от эпицентра грозы. Для того чтобы наблюдать джеты, ему следует навести оптику на 30-35 градусов по направлению к грозовой области. Тогда он сможет наблюдать часть ионосферы на высоте до 50 километров, именно в этой области чаще всего появляются джеты. Чтобы наблюдать спрайты, следует навести бинокль на угол 45-50 градусов, что будет соответствовать области неба на высоте около 80 км - месту, где рождаются спрайты.

Для лучшего и более детального изучения спрайтов, джетов, а тем более эльфов, наблюдателю лучше воспользоваться специальной киноаппаратурой, которая позволит детально зафиксировать небесные вспышки. Наиболее удачное время для охоты за спрайтами в России - период с середины июля по середину августа.

Интересные факты

Спрайты, как и молнии, встречаются не только на Земле, но и на других планетах Солнечной системы. Предположительно именно спрайты были зафиксированы космическими исследовательскими аппаратами во время сильных штормов на Венере, Сатурне и Юпитере.

Спрайты и эльфы возникают на такой большой высоте из-за сильной ионизации воздуха галактической пылью. На высоте свыше 80 километров проводимость тока в десять миллиардов раз выше, чем в приземных слоях атмосферы.

Название «спрайты» происходит от наименования лесных духов, о которых идет речь в комедии Уильяма Шекспира «Сон в летнюю ночь».

Спрайты были известны человечеству задолго до 1989 года. Люди высказывали разные гипотезы на счет природы этого явления, в том числе и то, что вспышки света являются инопланетными космическими кораблями. И только после того, как Джону Уинклеру удалось снять кадры спрайтов в ионосфере, ученые доказали, что они имеют электрическое происхождение.

Цвет спрайтов, джетов и эльфов разнится от высоты, на которой они появляются. Дело в том, что в околоземной атмосфере сосредоточено больше воздуха, тогда как в верхних слоях ионосферы наблюдается высокая концентрация азота. Воздух горит синим и белым пламенем, азот - красным. По этой причине джеты, которые находятся ниже спрайтов, имеют преимущественно синий цвет, а сами спрайты и, более высокие, эльфы - красноватый оттенок.

Т ворческий коллектив небесного театра под руководством грандиозного режиссёра – грозовых облаков – разнообразен. Он представлен расположенными внизу короткими голубыми джетами, красно-фиолетовыми спрайтами, находящимися немного выше, и, наконец, красными кольцеобразными эльфами, летающими в самой вышине. А теперь рассмотрим подробнее всю эту разношёрстную публику.

Спрайты над центральной частью Адриатического моря

Голубые джеты – самые таинственные и трудноуловимые артисты в труппе высотных разрядов. За короткий «рост», который, впрочем, достигает 40-километровой длины, их также называют «гномами» . В том слое атмосферы, где рождаются джеты, давление ещё более-менее высокое, поэтому нет ничего удивительного в том, что они голубые. Точно такой цвет имеют и обыкновенные молнии или коронные разряды на линиях электропередачи. Это явление обусловлено свечением молекул азота в ультрафиолетовом диапазоне.

Красные спрайты – Это настоящие знаменитости среди высотных газовых разрядов, поэтому к ним проявляется такой же интерес, как к популярным голливудским актёрам. Каждый день на нашей планете вспыхивает огромное количество спрайтов, и в отличие от джетов их легче заметить невооружённым глазом.

Спрайты представляют собой объёмные атмосферные образования, рождающиеся на высоте 70-90 километров и больше. На такой высоте атмосферный азот даёт красное свечение, а ближе к земле, с ростом давления, он меняет цвет на фиолетовый, синий и белый. Именно поэтому верхняя часть спрайтов имеет однородный тёмно-красный цвет, а та часть, которая находится ниже 70 километров, светится фиолетовым.

Спрайт - редкий вид грозовых разрядов

– венец атмосферных молний. Они появляются в нижней ионосфере на высоте до 100 километров и представляют собой стремительно расширяющиеся красные кольца, диаметр которых достигает 400 километров. Как правило, эльфы возникают в течение нескольких микросекунд после того, как обычная молния из грозового облака разрядится в землю. Узреть «эльфа» невооружённым глазом невозможно по очевидным причинам. Их можно зафиксировать только высокочувствительными приборами.

Интересные факты

  • Спрайты, как и молнии, встречаются не только на Земле, но и на других планетах Солнечной системы. Предположительно именно спрайты были зафиксированы космическими исследовательскими аппаратами во время сильных штормов на Венере, Сатурне и Юпитере.
  • Спрайты и эльфы возникают на такой большой высоте из-за сильной ионизации воздуха галактической пылью. На высоте свыше 80 километров проводимость тока в десять миллиардов раз выше, чем в приземных слоях атмосферы.
    Название «спрайты» происходит от наименования лесных духов, о которых идет речь в комедии Уильяма Шекспира «Сон в летнюю ночь».
  • Спрайты были известны человечеству задолго до 1989 года. Люди высказывали разные гипотезы на счет природы этого явления, в том числе и то, что вспышки света являются инопланетными космическими кораблями. И только после того, как Джону Уинклеру удалось снять кадры спрайтов в ионосфере, ученые доказали, что они имеют электрическое происхождение.
  • Цвет спрайтов, джетов и эльфов разнится от высоты, на которой они появляются. Дело в том, что в околоземной атмосфере сосредоточено больше воздуха, тогда как в верхних слоях ионосферы наблюдается высокая концентрация азота. Воздух горит синим и белым пламенем, азот – красным. По этой причине джеты, которые находятся ниже спрайтов, имеют преимущественно синий цвет, а сами спрайты и, более высокие, эльфы – красноватый оттенок.